subB.1

Substrate Storage

Deep dive.

Shawn Tabrizi
Software developer @ Parity Technologies Ltd.
shawntabrizi@parity.io | @shawntabrizi

Abstractions of Substrate Storage

Overlay Change Set o o
High Level Overview

Key Value Database

~ parity

Abstractions of Substrate Storage

Runtime Storage API ——

Overlay Change Set
Merkle Trie

Key Value Database

Sp-io can write to storage with
a given key + value

Easy APIs generated through
decl_storage! macro
StorageValue, StorageMap,
StorageDoubleMap, etc...

~ parity

Abstractions of Substrate Storage

Runtime Storage API

Overlay Change Set —
Merkle Trie

Key Value Database

Stages changes to the
underlying DB.

Overlay changes are
committed once per block.

Two kinds of changes:
o Prospective Changes - what may
happen.
o Committed Changes - what will
happen.

~ parity

Abstractions of Substrate Storage

a.k.a. HashDB
paritytech/trie
Data structure on top of KVDB
Arbitrary Key and Value length
Nodes are Branches or Leaves

Runtime Storage API

Overlay Change Set

el

Merkle Trie —

Key Value Database

~ parity

Abstractions of Substrate Storage

Runtime Storage API

Overlay Change Set

Merkle Trie

Key Value Database —

— e aka. KVDB

e |mplemented with RocksDB

e Hash ->Vec<u8>

e Substrate: Blake2? 256

Key (Hash 256) Value (Vec<u8>)
0x0fd923cabe7... [00]
0x92cdf578c47... | [01]
0x31237cdb79... [02]
0x581348337b... [03]

~ parity

Two Kinds of Keys!

e Trie key path
e KVDB key hash

Don't worry, we will come back to this...

~ parity

Substrate uses a

~ parity

Merkle Tree

Root Hash Root Node

Hash Can be used to verify
HO + H1
two trees are the same.

Hash O Hash 1

Branch Nodes

Hash 0-0 Hash 0-1 Hash 1-0

Lear Nodes

_ parity

Merkle Tree

Root Hash

HO + H1

Hash O

Hash(HO0-0
+ HO-1

Hash 1

Hash(H1-0
+ H1-1

Hash 1-0

Hash(D2)

Hash 0-0

Hash(DO)

Hash 0-1

Hash(D1)

Hash 1-1

h____________

Merkle tree allows
you to more easily
prove that some
data exists within
the tree with a
‘Merkle Proof”.

More about that
later.

~ parity

Patricia Trie

/K
ro ar
—\ |
C | | spective t] |ity
/\ A
ure ess y icipate
1. parity 2. participate | 3. party

4. process

5. procure

6. prospective

e Position in the tree
defines the
associated key.

e Space optimized for
elements which share
a prefix.

~ parity

Beyond Binary Trees

of1l2)34)sks)7sfo)alv)cld]le]r

A single hex character is called a "nibble”.

Branches can
have more than
two children.
Everything is the
same, just
scaled up.

~ parity

Merkle

parl'ry

Let's get visual.

What we will be working with...

Literal KVDB Table Types of Nodes
Key Value Prefix | Type
0x8f35a27d9... BRANCH] 00 Empty q |7
Ox2ebcd78e8... [LEAF 00] 01 Leaf
0x27434bcd0... | B¥S 10 Branch w/o value a |7
0x802c9c18c... | LEAFo2 11| Branchwvalue
0x986d278c5... (LEAF 03]
Node Structure
Trie Node
header | key children value

Virtual Trie Table

Trie Key Path

Value

[BRANCH]

a |7 |1 |1 3|5 |5

[LEAF 00]

[BRANCH
w/ VAL 01]

[LEAF 02]

[LEAF 03]

~ parity

Visual of the Substrate State Trie

Trie Key Path

Value

a

7

[BRANCH]

a

7

[LEAF 00]

[BRANCH
w/ VAL 01]

[LEAF 02]

[LEAF 03]

[LEAF 04]

pre |partial children
10 | a7 [0(1|2|3/4/5/6|/7|8|9|a cde”f
- —
prefix key-end | value /préﬂx key-end | value
01 1355 00 01 9365 04
pre |partial children value
11 | d3 |0|1|2|3/4/5/6|7|8|9 a|b|c|d|e|f| 01
— >
prefix key-end | value prefix key-end | value
01 7 02 01 7 03

~ parity

Visual of the Substrate State Trie

Trie Key Path

Value

a |7

[BRANCH]

pre |partial

a |7 |1 |1 |3 |5 |5

10 a’/

[LEAF 02]

[LEAF 03]

[LEAF 04]

prefix

./
key-end

value

prefix

value

01

02

01

03

All nodes are present.

Visual of the Substrate State Trie

Trie Key Path

Value

a

7

[BRANCH]

|

7

[LEAF 00]

[BRANCH
w/ VAL 01]

[LEAF 02]

[LEAF 03]

[LEAF 04]

pre |partial children
10 | a7 [0(1|2|3/4/5/6|/7|8|9|a cde”f
«— —
prefix key-end | value /préﬂx key-end | value
01 1355 00 01 9365 04
pre |partial children value
11 | d3 |0|1|2|3/4/5/6|7|8|9 a|b|c|d|e|f| 01
— >
prefix key-end | value prefix key-end | value
01 7 02 01 7 03

Nodes with a shared path
are children of a branch.

~ parity

Trie Key Path Value

Visual of the Substrate State Trie

a 7 [BRANCH]

a |7 |1 |1 |3 |5 |5 | !earool

pre |partial children
a |7 |7 |d|3 I VAL o1
10 a/ |0/1|/2/3/4|5/6|/7|8/9|a|b|c|d|e|f
Pd = a 7 7 d 3 3 7 [LEAF 02]
-« C [LEAF 03]
prefix key-end | value /préﬂx key-end | value i LERERENE
[LEAF 04]
01 1355 | 00 01 9365 | 04 ST e
pre |partial children value

You can then progress by
looking at the children of
the branch.

11 | d3 |0|1(2/3|4|/5/6/7|8|9|a|blc|d|e|[f| 01

—

prefix

key-end

value

prefix

value

01

02

01

03

~ parity

. . Trie Key Path Value
Visual of the Substrate State Trie
a 7 [BRANCH]
a |7 |1 [1 |38 |5 [5 | L&rol
pre |partial children
a |7 |7 |d |3 I VAL o1
10 a7 |0(1/2/3(4|5/6|/7|8/9|a|b|c|d|e|f
Pt = a 7 7 d 3 3 7 [LEAF 02]
-« C [LEAF 03]
prefix key-end | value /préﬂx key-end | value “ a 1717 EEEn° 7
[LEAF 04]
01 1355 | 00 01 9365 | 04 | a 171" ERERERE
pre |partial children value

11 | d3 |0|1(2/3|4|/5/6/7|8|9|a|blc|d|e|[f| 01

This is a KVDB look up!

—

prefix

key-end

value

prefix

value

01

02

01

03

~ parity

Visual of the Substrate State Trie

Trie Key Path Value
a 7 [BRANCH]
a |7 |1 |1 |3 |5 |5 &0
a |7 |7 |d]|3 Wl VAL o1
a |7 |7 |d |3 |3 |7 |[&0
a |7 |7 |d |3 |9 |7 |[&ros
a |7 |f |9 |3 |6 |5 | [&ro

pre |partial children
10 | a7 [0(1|2|3/4/5/6|/7|8|9|a cde”f
«— —
prefix key-end | value /préﬂx key-end | value
01 1355 00 01 9365 04
pre |partial children value
11 | d3 |0|1|2|3/4/5/6|7|8|9 a|blc|d|e|f| 01
e LN
— hJ
prefix key-end | value prefix key-end | value
01 7 02 01 7 03

You can have a branch
which also contains a value!

~ parity

Trie Key Path Value

Visual of the Substrate State Trie

a 7 [BRANCH]

a |7 |1 |1 |3 |5 |5 | !earol

pre |partial children
a |7 |7 |d |3 I VAL o1
10 a7 |0(1/2/3(4|5/6|/7|8/9|a|b|c|d|e|f
Pt = a 7 7 d 3 3 7 [LEAF 02]
-« C [LEAF 03]
prefix key-end | value /préﬂx key-end | value a |7]7]d]3 |9 »
[LEAF 04]
01 1355 | 00 01 9365 | 04 AN EREA LA E
pre |partial children value

You reach the end when
there are no more
branches.

11 | d3 |0|1(2/3|4|/5/6/7|8|9|a|blc|d|e|[f| 01

—

prefix

key-end

value

prefix

value

01

02

01

03

~ parity

What you just saw

e Patricia provides the trie path.

KVDB_LOOKUP(0xff1231a...) ->

partial children
a/ |0/1/2/3/4|/5/6|7|8|9 die|f
Oxd378a45...

KVDB_LOOKUP(0xd378a4...) ->

I

prefix

key-end

value

01

1355

00

Trie Path: a731355

|

~ parity

What you just saw

e Patricia provides the trie path.
e Merkle provides the recursive
hashing of children nodes into

the parent.

Hash([NODE]) = 0xff1231a...

partial children
a7 |0(1(/2,3|4/5/6|7|8|9|a|b|c|d|e|f
Oxd378a45... 0xc489b56...

I

Hash([NODE]) = 0xd378a45...

prefix

key-end

value

01

1355

00

~ parity

Two Kinds of Keys!

1. Trie key path is set by you! (e.g. ““CODE")

o Arbitrary length!
o Trie Node

m Header Info

m Key Info Trie Node
m Possible Children

m Possible Value

2. KVDB key = Hash([Trie Node])

~ parity

But wait... there's more.

~ parity

Child Trie

KVDB_LOOKUP(0Oxd378...)

StateDB Root Node

Child Trie Root Node

Leaf Node

Value:
Oxd378a45...

* Child tries can be a different
format than the Substrate StateDB.
_arity

Prefix Trie

Trie Key Path

Value

a |7

[BRANCH]

a |7 |1 |1 3

[LEAF 00]

a |7 |7 |d |3

[BRANCH
w/ VAL 01]

[LEAF 02]

[LEAF 03]

[LEAF 04]

e Similar to Child Trie, but you
cannot get the Root Hash.

e Probably something temporary
while we fIx pruning issues
with child trie.

~ parity

Runtime Storage Trie Path (NEW)

All modules use a prefix trie now! (Long term, they probably become a child trie.)

e Storage Value
0 twox1l28 (module) + twoxl1l28 (storagename)
e linked_map and map
0 twoxl28 (module) + twoxl28 (storagename) + hasher (key)
e linked_map head
O twoxl1l28 (module) + twox128 ("HeadOf" + storagename)
e double_map
0 twoxl1l28 (module) + twoxl28 (storagename) + hasher (keyl) + hasher (key?2)

~ parity

Pruning

0

1

Block 42

of1

o1

of1

o1

of1

o1

0Of1

For holding older
block states, and

cleaning it up.

Let’s update two

values in this trie.

~ parity

Pruning

We create new

Block 42 Block 43 database entries,
5 5 but keep the old
O» ‘1 ones too!
0 1 0
0 1 0 1 0 1

_ parity

Pruning

Block 42 Block 43 Block 44
R
«-lllIlll!1|||IIIIIiiiiiiiiiiill!!llllllllllllllllll‘1

~ parity

Pruning

Eventually, we Block 43 Block 44

prune the old data.

—
—

0 1 0 1 0 1 01

of1fof1fof1fof 1 ol 1ol 1]oo 1 1 0 EN-—.

Merkle Trie Complexity

Reading Data

— Storage Read

e O(logn) reads.
e Not so great...

~ parity

Writing Data

— Storage Read
[[] Hash Calculation

---- Storage Write

1. Follow the trie path to the value.
o O(logn) reads
2. Write the new value.

o 1 write
3. Calculate new hash
o 1 hash

4. Repeat (2) + (3) up the trie path
o O(logn) times

e O(logn) reads,
hashes, and
writes needed.

. @ Very expensive for

\ a database.

~ parity

Merkle Proof

— Storage Read by Full Node) O(lOg n)
Data Sent to Light Client '
B Data Sent to Light Clien e Great for light
—— Computational Verification I
clients!

& W

e |Low bandwidth,
low computation

Full Node: Follow the trie path to the value.
o O(logn) reads
Full Node: Upload data of trie nodes.

Light Client: Download trie node data.

Light Client: Verify by hashing.
o O(log n) hashes

~ parity

Best Practices

In general...

Your fundamental goal is to
the amount of
storage your runtime uses.

~ parity

You should only store
in
your runtime storage.

~ parity

Scenario: Decentralized Blog

e Runtime should be able % Store the text on IPFS

to come to consensus % Store the IPFS hash
about the content in a > DO NOT store the text of

blog post... the post in the storage!

~ parity

In general... store a struct:

Struct or Multiple Values?

Less reads/writes to update
multiple values.

Less overall nodes in the trie.

© O(log n) reads to get a value Adding small items into large

o O(log n) writes to update a value items accessed at the same time

e |ndirect costs is essentially free!

e Direct costs

o Increase number of nodes (n)

o Size of the value . .
Less efficient for single value

access.
Upgrades requires storage
migration.

Define Your Storage Trie Path Generation

Foo: double_map hasher(Shash1) u32, Shash2(u32) => u32

T T

You can control the hashing algorithm used.
By default, these are configured to use Blake2 256.

Final Trie Path:

twox128(module) + twox128(storagename) + hasher(key1) + hasher(key2)

~ parity

XXHash vs Blake2

e What hashing e Blake2
algorithm should o Cryptographic but slow...
i o Use when user can influence the input
| use for trie path
to the hash.
generation? e XXHash (twox)

o Non-cryptographic, but blazing fast...
o When you (the runtime developer)
controls this value, this is fine!

~ parity

Unbalanced Trie

e Can happen if a user can
influence the trie path.

e Operations are no longer
O(log n)!

~ parity

Lists

e Vec: For storing a bounded number of values.

o Good for when you need to change multiple values at a time (single read/write).

o Enables iteration. Ex: The current validator set.
e Map: For storing an unbounded number of values.

o Good for random access to data. Ex;: User balances.

e Linked Map: For storing unbounded amount of data, but Ul

or an offchain worker needs to iterate on all the entries.

o Ex: The list of nominators and their nominations.

~ parity

Abstractions of Substrate Storage

Runtime Storsge AP Think about all the

Overtay Change St layers when you are
e writing to Substrate
— storage.

Key Value Database

~ parity

Questions?

shawntabrizi@parity.io
@shawntabrizi

Runtime Storage API

Overlay Change Set

Merkle Trie

Key Value Database

Runtime

SR-10

WASM
WASM EXEC

EXTERNALites /
Overlay changes

BACKEND

IN-MEMORY Storage
(storage proof) trie db backend

state cache

State db

Hash db
paritytech/trie

~ parity

