
Substrate Storage
Deep dive.

Shawn Tabrizi
Software developer @ Parity Technologies Ltd.

shawntabrizi@parity.io | @shawntabrizi

Abstractions of Substrate Storage

High Level Overview

Runtime Storage API

Merkle Trie

Key Value Database

Overlay Change Set

Abstractions of Substrate Storage

● sp-io can write to storage with
a given key + value

● Easy APIs generated through
decl_storage! macro

● StorageValue, StorageMap,
StorageDoubleMap, etc...

Runtime Storage API

Merkle Trie

Key Value Database

Overlay Change Set

Abstractions of Substrate Storage

● Stages changes to the
underlying DB.

● Overlay changes are
committed once per block.

● Two kinds of changes:
○ Prospective Changes - what may

happen.
○ Committed Changes - what will

happen.

Runtime Storage API

Merkle Trie

Key Value Database

Overlay Change Set

Abstractions of Substrate Storage

● a.k.a. HashDB
● paritytech/trie
● Data structure on top of KVDB
● Arbitrary Key and Value length
● Nodes are Branches or Leaves

Runtime Storage API

Merkle Trie

Key Value Database

Overlay Change Set

Abstractions of Substrate Storage

● a.k.a. KVDB
● Implemented with RocksDB
● Hash -> Vec<u8>
● Substrate: Blake2 256

Key (Hash 256) Value (Vec<u8>)

0x0fd923ca5e7... [00]

0x92cdf578c47... [01]

0x31237cdb79... [02]

0x581348337b... [03]

Runtime Storage API

Merkle Trie

Key Value Database

Overlay Change Set

Two Kinds of Keys!

● Trie key path

● KVDB key hash

Don’t worry, we will come back to this...

Substrate uses a
Base-16 Patricia Merkle Trie

Merkle Tree

Root Hash
Hash

(H0 + H1)

Hash 0
Hash(H0-0

+ H0-1)

Hash 1
Hash(H1-0

+ H1-1)

Hash 1-1

Hash(D3)

Hash 1-0

Hash(D2)

Hash 0-1

Hash(D1)

Hash 0-0

Hash(D0)

Data 0 Data 1 Data 2 Data 3

Root Node
Can be used to verify
two trees are the same.

Branch Nodes

Leaf Nodes

Merkle Tree

Root Hash
Hash

(H0 + H1)

Hash 0
Hash(H0-0

+ H0-1)

Hash 1
Hash(H1-0

+ H1-1)

Hash 1-1

Hash(D3)

Hash 1-0

Hash(D2)

Hash 0-1

Hash(D1)

Hash 0-0

Hash(D0)

Data 0 Data 1 Data 2 Data 3

Merkle tree allows
you to more easily
prove that some
data exists within
the tree with a
“Merkle Proof”.

More about that
later.

Patricia Trie
● Position in the tree

defines the
associated key.

● Space optimized for
elements which share
a prefix.

p

arro

c

ure

spective ityt

y icipate

1. parity 2. participate 3. party

4. process 5. procure 6. prospective

ess

Beyond Binary Trees

0 1 2 3 4 5 6 7 8 9 a b c d e f

● Branches can
have more than
two children.

● Everything is the
same, just
scaled up.

A single hex character is called a “nibble”.

Creation of the Patricia Merkle Trie

Patricia Merkle

Let’s get visual.

What we will be working with...

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

Key Value

0x8f35a27d9... [BRANCH]

0x2ebcd78e8... [LEAF 00]

0x27434bcd0... [BRANCH w/
VAL 01]

0x802c9c18c... [LEAF 02]

0x986d278c5... [LEAF 03]

Virtual Trie TableLiteral KVDB Table
Prefix Type

00 Empty

01 Leaf

10 Branch w/o value

11 Branch w value

Trie Node

header key children value

Types of Nodes

Node Structure

Visual of the Substrate State Trie

pre partial children value

11 d3 0 1 2 3 4 5 6 7 8 9 a b c d e f 01

prefix key-end value

01 7 02

prefix key-end value

01 7 03

pre partial children

10 a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

prefix key-end value

01 9365 04

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

Visual of the Substrate State Trie

pre partial children value

11 d3 0 1 2 3 4 5 6 7 8 9 a b c d e f 01

prefix key-end value

01 7 02

prefix key-end value

01 7 03

pre partial children

10 a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

prefix key-end value

01 9365 04

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

All nodes are present.

Visual of the Substrate State Trie

pre partial children value

11 d3 0 1 2 3 4 5 6 7 8 9 a b c d e f 01

prefix key-end value

01 7 02

prefix key-end value

01 7 03

pre partial children

10 a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

prefix key-end value

01 9365 04

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

Nodes with a shared path
are children of a branch.

Visual of the Substrate State Trie

pre partial children value

11 d3 0 1 2 3 4 5 6 7 8 9 a b c d e f 01

prefix key-end value

01 7 02

prefix key-end value

01 7 03

pre partial children

10 a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

prefix key-end value

01 9365 04

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

You can then progress by
looking at the children of
the branch.

Visual of the Substrate State Trie

pre partial children value

11 d3 0 1 2 3 4 5 6 7 8 9 a b c d e f 01

prefix key-end value

01 7 02

prefix key-end value

01 7 03

pre partial children

10 a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

prefix key-end value

01 9365 04

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

This is a KVDB look up!

Visual of the Substrate State Trie

pre partial children value

11 d3 0 1 2 3 4 5 6 7 8 9 a b c d e f 01

prefix key-end value

01 7 02

prefix key-end value

01 7 03

pre partial children

10 a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

prefix key-end value

01 9365 04

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

You can have a branch
which also contains a value!

Visual of the Substrate State Trie

pre partial children value

11 d3 0 1 2 3 4 5 6 7 8 9 a b c d e f 01

prefix key-end value

01 7 02

prefix key-end value

01 7 03

pre partial children

10 a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

prefix key-end value

01 9365 04

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

You reach the end when
there are no more
branches.

What you just saw

● Patricia provides the trie path.
partial children

a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

KVDB_LOOKUP(0xd378a4…) ->

KVDB_LOOKUP(0xff1231a…) ->

0xd378a45…

Trie Path: a731355

0xc489b56…

What you just saw

● Patricia provides the trie path.

● Merkle provides the recursive

hashing of children nodes into

the parent.

partial children

a7 0 1 2 3 4 5 6 7 8 9 a b c d e f

prefix key-end value

01 1355 00

Hash([NODE]) = 0xd378a45…

Hash([NODE]) = 0xff1231a…

0xd378a45… 0xc489b56…

Two Kinds of Keys!

1. Trie key path is set by you! (e.g. “:CODE”)
○ Arbitrary length!

○ Trie Node

■ Header Info

■ Key Info

■ Possible Children

■ Possible Value

2. KVDB key = Hash([Trie Node])

Trie Node

header key children value

But wait… there’s more.

Child Trie

Child Trie Root Node

StateDB Root Node

Leaf Node

Value:
0xd378a45…

KVDB_LOOKUP(0xd378…)

* Child tries can be a different
format than the Substrate StateDB.

Prefix Trie

Trie Key Path Value

a 7 [BRANCH]

a 7 1 1 3 5 5 [LEAF 00]

a 7 7 d 3 [BRANCH
w/ VAL 01]

a 7 7 d 3 3 7 [LEAF 02]

a 7 7 d 3 9 7 [LEAF 03]

a 7 f 9 3 6 5 [LEAF 04]

● Similar to Child Trie, but you
cannot get the Root Hash.

● Probably something temporary
while we fix pruning issues
with child trie.

Runtime Storage Trie Path (NEW)

All modules use a prefix trie now! (Long term, they probably become a child trie.)

● Storage Value
○ twox128(module) + twox128(storagename)

● linked_map and map
○ twox128(module) + twox128(storagename) + hasher(key)

● linked_map head
○ twox128(module) + twox128("HeadOf" + storagename)

● double_map
○ twox128(module) + twox128(storagename) + hasher(key1) + hasher(key2)

Pruning

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

R

Block 42
● For holding older

block states, and

cleaning it up.

● Let’s update two

values in this trie.

Pruning

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

R

Block 42 Block 43

R

1 1

0 1

1

1

We create new

database entries,

but keep the old

ones too!

Pruning

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

R

Block 42 Block 43 Block 44

R

1 1

0 1

1

1

0

1

1

1

R

Pruning

0 1 0 1 0 1 0 1 0 1 0 1 0 0

0 1 0 1 0 1

0 1 0

0

Block 43 Block 44

R

1 1

0 1

1

1

0

1

1

1

R

Eventually, we

prune the old data.

Merkle Trie Complexity

● O(log n) reads.
● Not so great...

Reading Data

Storage Read

● O(log n) reads,
hashes, and
writes needed.

● Very expensive for
a database.

Writing Data

1. Follow the trie path to the value.
○ O(log n) reads

2. Write the new value.
○ 1 write

3. Calculate new hash
○ 1 hash

4. Repeat (2) + (3) up the trie path
○ O(log n) times

Hash Calculation

Storage Read

Storage Write

● O(log n)
● Great for light

clients!
● Low bandwidth,

low computation

Merkle Proof

Data Sent to Light Client

Storage Read by Full Node

Computational Verification

1. Full Node: Follow the trie path to the value.
○ O(log n) reads

2. Full Node: Upload data of trie nodes.

3. Light Client: Download trie node data.
4. Light Client: Verify by hashing.

○ O(log n) hashes

Best Practices

In general...

Your fundamental goal is to
minimize the amount of
storage your runtime uses.

You should only store
consensus critical data in
your runtime storage.

Scenario: Decentralized Blog

● Runtime should be able

to come to consensus

about the content in a

blog post…

★ Store the text on IPFS

★ Store the IPFS hash

➢ DO NOT store the text of

the post in the storage!

Struct or Multiple Values?

● Direct costs
○ O(log n) reads to get a value

○ O(log n) writes to update a value

● Indirect costs
○ Increase number of nodes (n)

○ Size of the value

In general… store a struct:

★ Less reads/writes to update
multiple values.

★ Less overall nodes in the trie.
★ Adding small items into large

items accessed at the same time
is essentially free!

➢ Less efficient for single value
access.

➢ Upgrades requires storage
migration.

Define Your Storage Trie Path Generation

Foo: double_map hasher($hash1) u32, $hash2(u32) => u32

You can control the hashing algorithm used.
By default, these are configured to use Blake2 256.

Final Trie Path:

twox128(module) + twox128(storagename) + hasher(key1) + hasher(key2)

XXHash vs Blake2

● What hashing

algorithm should

I use for trie path

generation?

● Blake2
○ Cryptographic but slow…

○ Use when user can influence the input

to the hash.

● XXHash (twox)
○ Non-cryptographic, but blazing fast…

○ When you (the runtime developer)

controls this value, this is fine!

Unbalanced Trie

● Can happen if a user can

influence the trie path.

● Operations are no longer

O(log n)!

Lists

● Vec: For storing a bounded number of values.
○ Good for when you need to change multiple values at a time (single read/write).

○ Enables iteration. Ex: The current validator set.

● Map: For storing an unbounded number of values.
○ Good for random access to data. Ex: User balances.

● Linked Map: For storing unbounded amount of data, but UI

or an offchain worker needs to iterate on all the entries.
○ Ex: The list of nominators and their nominations.

Abstractions of Substrate Storage

Think about all the
layers when you are
writing to Substrate
storage.

Runtime Storage API

Merkle Trie

Key Value Database

Overlay Change Set

Questions?

shawntabrizi@parity.io
@shawntabrizi

SR-IO

Runtime

WASM EXEC
WASM

EXTERNALites /
Overlay changes

BACKEND

IN-MEMORY
(storage proof)

Storage
trie db backend

KVDB

state cache

State db

Hash db
paritytech/trie

ROCKS DB

Runtime Storage API

Merkle Trie

Key Value Database

Overlay Change Set

